Senin, 21 Desember 2009

Cellular Technology

Telekomunikasi seluler mengalami perkembangan yang sangat pesat yaitu ditandai dengan perkembangan jumlah pelanggan, perkembangan teknologi dan layanan. Dari segi perkembangan pelanggan, pertumbuhan pelanggan telepon seluler mengalami peningkatan yang menakjubkan dibanding pertumbuhan dari industri-industri lainnya. Angka pertumbuhan pelanggan telepon seluler secara global mencapai 30% per tahun .
Dari sisi teknologi, teknologi telekomunikasi seluler telah mengalami evolusi mulai dari generasi (1G) berkembang dengan munculnya teknologi generasi berikutnya (2G dan 3G). Saat ini bahkan sudah mulai kajian dan persiapan standarisasi teknologi dan layanan generasi keempat (4G). Perkembangan teknologi seluler tersebut adalah dalam rangka menyediakan kapasitas dan transfer data yang lebih tinggi sehingga mampu mendukung adanya kebutuhan akan layanan yang memerlukan transfer data berkecepatan tinggi, misalnya layanan multimedia.

Pada tahun 1978 teknologi seluler masih dalam proses uji coba di Amerika Serikat, namun pada saat ini jutaan orang yang sudah menggunakan piranti telekomunikasi seluler seperti handphone, PDA dan sebagainya. Selain untuk komunikasi suara , penggunaan jaringan seluler telah berkembang ke bentuk komunikasi data seperti video, gambar, animasi dan teks.

Pada dasarnya teknologi seluler merupakan hasil pengembangan dari teknologi radio yang dikombinasikan dengan teknologi telepon. Dari kombinasi ini dihasilkan teknologi telekomunikasi seluler dengan pirantinya yang bersifat wireless (tanpa kabel), portable (mudah dibawa) dan mobile (dapat dibawa berpindah tempat).

Komponen jaringan seluler terdiri dari base station, MTSO (Mobile Telecommunication Switching Office) dan piranti komunikasi seluler. Fungsi dari base station adalah memberikan jalur hubungan komunikasi radio dengan piranti-piranti seluler yang berada dalam suatu wilayah sel.

Sedangkan MTSO bertugas sebagai pengatur lalulintas komunikasi yang menerima dan menghubungkan panggilan dari pengguna piranti seluler ke jaringan PSTN (telepon rumah), memonitor kualitas sinyal komunikasi dan mengatur perpindahan base station yang menangani komunikasi dengan suatu piranti seluler.

Generasi Pertama (1G)
Teknologi telekomunikasi seluler generasi pertama disebut juga sebagai sistem analog. Pada generasi ini yang terkenal adalah AMPS yang dikembangkan oleh Bell Labs USA pada tahun 1970. Teknologi AMPS menggunakan modulasi frekuensi sebagai mekanisme transmisi dan beroperasi pada pita frekuensi 800 MHz. AMPS kemudian menjadi standar komunikasi di seluruh dunia. Beberapa sistem analog lainnya adalah ETACS (Extended Total Access Telecommunication Service) dan NMT (Nordic Mobile telecommunication) yang keduanya banyak digunakan di Eropa.

Generasi Kedua (2G)
Sistem telekomunikasi seluler pada generasi kedua menggunakan teknologi digital. Sistem telekomunikasi seluler pada generasi kedua menggunakan basis teknologi TDMA dan CDMA. Sistem yang menggunakan TDMA adalah IS-136 dan GSM. Rancangan utama dari sistem ini adalah untuk mendukung aliran suara berbentuk circuit-switched, pada perkembangannya sistem ini mampu pula mendukung paket data circuit-switched dan Iayanan pesan dengan menggunakan Short Message Service (SMS). Teknologi lainnya pada 2G adalah IS-95 atau Narrowband CDMA dan CDMA.

Generasi Trasnsisi (2.5G)
Beberapa teknologi data yang berada pada posisi transisi telah dikembangkan dalam rangka mendapatkan kecepatan transfer data yang lebih tinggi sesegera mungkin dengan biaya implementasi yang lebih murah. Hal ini karena implementasi teknologi 3G memerlukan waktu yang cukup lama dan biaya yang sangat besar. Teknologi-teknologi ini pada umumnya dikembangkan untuk meningkatkan kemampuan dari sistem standar pada 2G dimana implementasinya diperlakukan sebagai proses upgrade terhadap jaringan 2G. Hal ini menyebabkan teknologi-teknologi ini dikelompokkan sebagai teknologi 2.5G.
Sistem berbasis teknologi TDMA pada generasi 2.5G meliputi teknologi IS-96 yang telah memberikan kecepatan lebih tinggi. Sistemberteknologi TDMA pada generasi 2.G meliputi High Speed Circuit Swithed Digital (HSCSD), lxEV dan General Packet Radio Service (GPRS). Teknologi-teknologi tersebut awalnya dikembangkan untuk GSM, tetapi kemudian diadopsi juga oleh badan standarisasi IS-136. Selain GPRS, teknologi lainnya adalah IS-95B dan 1S-95C yang merupakan pengembangan dari CDMA.

Generasi Ketiga (3G)
Pada tahun 1985, International Telecommunication Union (ITU) menentukan versi untuk suatu sistem seluler generasi ketiga (3G), pada saat pertama disebut Future Public Land Mobile Telecommunication System (FPLMTS) dan kemudian dinamai Internasional Mobile Telecommunication-2000 (IMT-2000). ITU mehyusun tujuan dari proyek IMT-2000 dan mengalokasikan rentang frekwensi global.

Generasi Ketiga (4G)
Untuk meningkatkan kecepatan akses data yang tinggi dan full mobile maka standar IMT-2000 di tingkatkan lagi menjadi 10Mbps,30Mbps dan 100Mbps yang semula hanya 2Mbps pada layanan 3G.Kecepatan akses tersebut didapat dengan mengguanakan teknologi OFDM(Orthogonal Frequency Division Multiplexing) dan Multi Carrier.Di Jepang layanan generasi keempat ini sudah di implementasikan.

Read More..

ISDN

SEKILAS ISDN

ISDN (Integrated Services Digital Network) merupakan layanan komunikasi telepon digital sekaligus pengiriman data. Layanan ini ditawarkan oleh Telkom dengan nama "Pasopati". ISDN memungkinkan pengiriman suara, data, teks, grafik, musik, gambar bergerak dan lainnya melalui jaringan telepon digital. Ini berarti pengguna ISDN dapat menggunakan layanan ini untuk melakukan panggilan telepon atau juga mengirim data antar LAN.

ISDN Telkom memiliki dua tipe, ISDN PRA (Primary Rate Access, 1984 Kbps) dan ISDN (BRA (Basic Rate Access, 144 Kbps). PRA terdiri dari 30 kanal, masing-masing berukuran 64 Kbps, ditambah sebuah kanal signal sebesar 64 Kbps, total menjadi 1984 Kbps. BRA terdiri dari 2 kanal, masing-masing berukuran 64 Kbps, ditambah sebuah kanal signal sebesar 16 Kbps, total menjadi 144 Kbps. BRA menyediakan transfer data pada 144 Kbps hanya dengan sebuah twisted-pair.

PERANGKAT BRA (Basic Rate Access)

Komponen ISDN adalah terminal, terminal adapter (disebut TA), perangkat network-termination, perangkat line-termination, dan perangkat exchange-termination. Terminal ISDN ada dua macam. Yang khusus dibuat untuk ISDN disebut sebagai perangkat terminal tipe 1 (disebut TE1). Yang tidak dibuat untuk ISDN, seperti pesawat telepon, yang telah diciptakan sebelum adanya standar ISDN, disebut sebagai tipe 2 (disebut TE2). TE1 dihubungkan dengan network ISDN menggunakan kabel twisted-pair 4 kabel digital. TE2 yang hendak dihubungkan ke ISDN harus melalui sebuah terminal adapter (TA). TA bisa berupa perangkat yang berdiri sendiri atau dapat juga berupa board di dalam sebuah TE2.

Di atas perangkat TE1 dan TE2, koneksi berikutnya adalah perangkat network-termination tipe 1 (NT1) atau network-termination tipe 2 (NT2). Perangkat ini adalah perangkat yang menghubungkan pengkabelan pelanggan ke local loop 2 kabel. Perangkat NT2 lebih kompleks dan biasanya ditemukan di perangkat PBX dan melaksanakan tugas protokol layer 2 dan 3. Perangkat NT1 dan NT2 juga terdapat pada perangkat yang mengkombinasikan fungsi NT1 dan NT2.

Perangkat ISDN dapat "memanggil" perangkat ISDN lainnya yang dihubungkan dengan jalur ISDN. Dengan cara ini pelanggan dapat menghubungkan 2 LAN pada daerah yang berjauhan dengan koneksi full digital berkecepatan hingga 128 Kbps. Dibawah ini adalah gambaran sederhana tentang koneksi dua perangkat ISDN melalui jalur ISDN milik Telkom.

Ada dua macam WAN port ISDN pada router ISDN. Pertama adalah S/T interface dan kedua adalah U interface. Router ISDN dengan U interface telah memiliki perangkat NT1 terintegrasi di dalamnya. Pada beberapa kasus, pelanggan di Jakarta sebaiknya menggunakan perangkat ISDN dengan NT-1 yang tidak terintegrasi di dalam perangkat. Gunakanlah perangkat ISDN dengan S/T interface, dan gunakan NT1 eksternal. Penggunaan perangkat ISDN dengan NT1 yang terintegrasi di dalamnya seringkali mengakibatkan ketidaksesuaian.

Umumnya perangkat modem dan router ISDN memiliki 2 port RJ-11 yang dapat dihubungkan ke pesawat telepon biasa (analog). Mengapa dua? Karena ISDN BRA memiliki dua kanal 64 Kbps, setiap kanal dapat digunakan untuk melakukan panggilan telepon atau mengirimkan data. Jadi, apabila sedang tidak digunakan untuk mengirimkan data, kedua kanal tadi masing-masingnya dapat digunakan untuk melakukan panggilan telepon. Apabila router atau modem tersebut sedang menggunakan bandwidth sampai 64 Kbps maka baru satu kanal yang digunakan, kanal satunya dapat dipergunakan untuk melakukan panggilan telepon. Namun apabila router atau modem tersebut sedang menggunakan bandwidth lebih besar dari 64 Kbps maka kedua kanal tadi akan terpakai dan tidak dapat digunakan untuk melakukan panggilan telepon.

PRO DAN KONTRA

Keunggulan ISDN:
· Pelanggan dapat menggunakan saluran ISDN untuk telepon dan data.
· Kecepatan melebihi modem analog 56 Kbps, tanpa penurunan kualitas.
· Tidak membutuhkan pengkabelan baru, dapat menggunakan kabel telepon yang
sudah ada untuk dimigrasikan ke ISDN.
· Koneksi full digital.
· Instalasi yang relatif cepat oleh Telkom (apabila sudah tercakup
dalam wilayah yang memiliki jaringan ISDN).
· Pengguna dapat mematikan koneksinya sewaktu-waktu untuk menghemat
biaya pulsa ISDN Telkom.

Kekurangan ISDN:
· Layanan ini tidak terdapat di semua wilayah.
· Penggunaan ISDN yang kontinyu menjadikannya lebih mahal dari koneksi
leased line.

Read More..

Senin, 14 Desember 2009

ATM ( Anjungan Tunai Mandiri / Automated Teller Machine)

1. ATM

ATM (Automatic teller machine atau automated teller machine,di Indonesia juga kadang merupakan singkatan bagi anjungan tunai mandiri) adalah sebuah alat elektronik yang mengijinkan nasabah bank untuk mengambil uang dan mengecek rekening tabungan mereka tanpa perlu dilayani oleh seorang "teller" manusia. Banyak ATM juga mengijinkan penyimpanan uang atau cek, transfer uang atau bahkan membeli perangko.Banyak ATM juga telah mengizinkan para nasabah bank untuk membeli keperluan hidup melalui tarnsaksi ATM. Artinya ATM tidak hanya melayani nasabah bank untuk menyimpan atau mengambil uang secara otomatis. Seperti banyak ATM yang memberikan kemudahan nasabah untuk mentransfer uang ke sesama bank atau ke bank-bank yang berbeda, membeli pulsa atau perangko, dan lain sebagainya. ATM (AutomaticTeller Machine, atau Automated Teller Machine, atau di Indonesia dikenal sebagai Anjungan Tunai Mandiri) sudah bukan merupakan benda asing lagi bagi rakyat negara ini. Penduduk kota maupun desa sudah sangat akrab dengan mesin pencetak uang otomatis ini. Dengan perkembangan teknologi yang pesat saat ini, ATM sudah menyediakan banyak kemudahan bagi semua orang, transaksi apapun dapat dilakukan melalui alat ini, mulai dari penarikan tunai, transfer uang, pemindah bukuan, pembayaran tagihan, bahkan setoran tunai maupun cetak buku dapat dilakukan di ATM, dan akses ATM juga dapat dilakukan via mobile bahkan internet. Namun sedikit pula yang mengetahui secara rinci bagaimana mesin ini bekerja dan melayani setiap nasabahnya serta seperti apa awal dari munculnya mesin ini. Semua pertanyaan tersebut akan dibahas pada subjudul berikutnya.

2. SEJARAH ATM (AUTOMATIC TELLER MACHINE atau ANJUNGAN TUNAI MANDIRI)

Pada mulanya mesin pintar ini ditemukan oleh Don Wetzel, Vice President of Product Planning pada perusahaan Docutel (Sumber: Kompas.co.id). Kompas.co.id juga menerangkan bahwa konsep ATM pertama kali lahir pada tahun 1968, lalu prototipenya muncul setahun kemudian, dan akhirnya Ducotel mendaftarkannya pada Kantor paten pada tahun 1973.
Perusahaan Docutel membeli mesin ATM dari tiga orang pembuatnya, yaitu Don Wetzel, yang pada saat itu adalah seorang Vice President of Product Planning di Docutel, Tom Barnes, Kepala Mekanik dan George Chastian, seorang insyinyur listrik. Ide awalnya berasal dari Wetzel, ketika mengantre di bank. Wetzel kerapkali merasa capai ketika berurusan dengan bank yang harus selalu mengantre untuk satu layanan sebagai nasabah bank. Hingga akhirnya ketiga penemu ini menciptakan mesin ATM yang di Indonesia dikenal dengan istilah Anjungan Tunai Mandiri. Dan dana yang dihabiskan untuk sebuah mesin ATM pertama kali adalah sekitar lima juta dollar. Kemudian Perusahaan Docutel mengembangkan peralatan penanganan bagasi secara otomatis pada tahun 1968.
ATM pertama dipasang atau digunakan oleh sebuah bank di New York, yaitu Chemical Bank New York. Namun, fakta ini masih menjadi sebuah controversial oleh banyak pihak, karena banyak bank yang mengclaim sebagai pengguna Automatic Teller Machine pertama, tapi Chemical Bank New York menyatakan hal tersebut berdasarkan catatan yang dibuat oleh Wetzel.
ATM pertama ini tidak diletakkan di lobi bank, melainkan di dinding luar bank yang menghadap ke jalan raya. Dan untuk melindungi mesin dari hujan dan sinar matahari bank menggunakan kanopi. Dan saat ini, perkembangan ATM telah merambah ke seluruh dunia termasuk Negara ini untuk melakukan berbagai transaksi perbankan. Secara umum ATM terdiri dari box ATM, tombol angka sebagai keyboard yang dilengkapi tombol cancel, enter dan exit, kemudian sebuah layar atau monitor dan kamera (optional) yang biasa terlihat dari luar bilik ATM. Sementara di dalam ATM itu sendiri terdiri dari sebuah CPU, keyboard, modem, kotak uang, printer mini dan card reader.



Read More..

Selasa, 17 November 2009

Frame Relay

Frame Relay adalah protokol packet-switching yang menghubungkan perangkat-perangkat telekomunikasi pada satu Wide Area Network (WAN).[1] Protokol ini bekerja pada lapisan Fisik dan Data Link pada model referensi OSI.[2] Protokol Frame Relay menggunakan struktur Frame yang menyerupai LAPD, perbedaannya adalah Frame Header pada LAPD digantikan oleh field header sebesar 2 bita pada Frame Relay.

Keuntungan Frame Relay
Frame Relay menawarkan alternatif bagi teknologi Sirkuit Sewa lain seperti jaringan X.25 dan sirkuit Sewa biasa. Kunci positif teknologi ini adalah:[3]

Sirkuit Virtual hanya menggunakan lebar pita saat ada data yang lewat di dalamnya, banyak sirkuit virtual dapat dibangun secara bersamaan dalam satu jaringan transmisi.
Kehandalan saluran komunikasi dan peningkatan kemampuan penanganan error pada perangkat-perangkat telekomunikasi memungkinkan protokol Frame Relay untuk mengacuhkan Frame yang bermasalah (mengandung error) sehingga mengurangi data yang sebelumnya diperlukan untuk memproses penanganan error.

Standarisasi Frame Relay
Proposal awal mengenai teknologi Frame Relay sudah diajukan ke CCITT semenjak tahun 1984, namun perkembangannya saat itu tidak signifikan karena kurangnya interoperasi dan standarisasi dalam teknologi ini. Perkembangan teknologi ini dimulai di saat Cisco, Digital Equipment Corporation (DEC), Northern Telecom, dan StrataCom membentuk suatu konsorsium yang berusaha mengembangkan frame relay. Selain membahas dasar-dasar protokol Frame Relay dari CCITT, konsorsium ini juga mengembangkan kemampuan protokol ini untuk berinteroperasi pada jaringan yang lebih rumit. Kemampuan ini di kemudian hari disebut Local Management Interface (LMI).[4]

Format Frame Relay

Struktur Frame pada Frame RelayFormat Frame Relay terdiri atas bagian-bagian sebagai berikut:[5]

Flags
Membatasi awal dan akhir suatu frame. Nilai field ini selalu sama dan dinyatakan dengan bilangan hexadesimal 7E atau 0111 1110 dalam format biner. Untuk mematikan bilangan tersebut tidak muncul pada bagian frame lainnya, digunakan prosedur Bit-stuffing dan Bit-destuffing.

Address
Terdiri dari beberapa informasi:

Data Link Connection Identifier (DLCI), terdiri dari 10 bita, bagian pokok dari header Frame Relay dan merepresentasikan koneksi virtual antara DTE dan Switch Frame Relay. Tiap koneksi virtual memiliki 1 DLCI yang unik.
Extended Address (EA), menambah kemungkinan pengalamatan transmisi data dengan menambahkan 1 bit untuk pengalamatan
C/R, menentukan apakah frame ini termasuk dalam kategori Perintah (Command) atau Tanggapan (Response)
FECN (Forward Explicit Congestion Notification), indikasi jumlah frame yang dibuang karena terjadinya kongesti di jaringan tujuan
BECN (Backward Explicit Congestion Notification), indikasi jumlah frame yang mengarah ke switch FR tersebut tetapi dibuang karena terjadinya kongesti di jaringan asal
Discard Eligibility, menandai frame yang dapat dibuang jika terjadi kongesti di jaringan

Data
Terdiri dari data pada layer di atasnya yang dienkapsulasi. Tiap frame yang panjangnya bervariasi ini dapat mencapai hingga 4096 oktet.

Frame Check Sequence
Bertujuan untuk memastikan integritas data yang ditransmisikan. nilai ini dihitung perangkat sumber dan diverifikasi oleh penerima.

Sirkuit Virtual

2 jenis sirkit dalam Frame Relay: Switched Virtual Circuit dan Permanent Virtual CircuitFrame pada Frame Relay dikirimkan ke tujuannya dengan menggunakan sirkit virtual (jalur logikal dalam jaringan). Sirkit Virtual ini bisa berupa Sirkit Virtual Permanen (Permanent Virtual Circuit / PVC), atau Sirkit Virtual Switch (Switched Virtual Circuit / SVC).

Permanent Virtual Circuit (PVC)
PVC adalah koneksi yang terbentuk untuk menghubungkan 2 peralatan secara terus menerus tanpa memperhitungkan apakah sedang ada komunikasi data yang terjadi di dalam sirkit tersebut. PVC tidak memerlukan proses pembangunan panggilan seperti pada SVC dan memiliki 2 status kerja:

Data Transfer, pengiriman data sedang terjadi dalam sirkit
Idle, koneksi antar titik masih aktif tapi tidak ada data yang dikirimkan dalam sirkit

Switched Virtual Circuit (SVC)
SVC adalah koneksi sementara yang terbentuk hanya pada kondisi dimana pengiriman data berlangsung. Status-status dalam koneksi ini adalah:

Call Setup, hubungan antar perangkat sedang dibangun
Data Transfer, data dikirimkan antar perangkat dalam sirkit virtual yang telah dibangun
Idle, ada koneksi aktif yang telah terbentuk, tetapi tidak ada data yang lewat di dalamnya
Call Termination, pemutusan hubungan antar perangkat, terjadi saat waktu idle melebihi patokan yang ditentukan


Read More..

Kamis, 12 November 2009

Wi-Fi

Wi-Fi merupakan kependekan dari Wireless Fidelity, yang memiliki pengertian yaitu sekumpulan standar yang digunakan untuk Jaringan Lokal Nirkabel (Wireless Local Area Networks - WLAN) yang didasari pada spesifikasi IEEE 802.11. Standar terbaru dari spesifikasi 802.11a atau b, seperti 802.16 g, saat ini sedang dalam penyusunan, spesifikasi terbaru tersebut menawarkan banyak peningkatan mulai dari luas cakupan yang lebih jauh hingga kecepatan transfernya.

Awalnya Wi-Fi ditujukan untuk penggunaan perangkat nirkabel dan Jaringan Area Lokal (LAN), namun saat ini lebih banyak digunakan untuk mengakses internet. Hal ini memungkinan seseorang dengan komputer dengan kartu nirkabel (wireless card) atau personal digital assistant (PDA) untuk terhubung dengan internet dengan menggunakan titik akses (atau dikenal dengan hotspot) terdekat.

Spesifikasi
Wi-Fi dirancang berdasarkan spesifikasi IEEE 802.11. Sekarang ini ada empat variasi dari 802.11, yaitu:

* 802.11a
* 802.11b
* 802.11g
* 802.11n

Spesifikasi b merupakan produk pertama Wi-Fi. Variasi g dan n merupakan salah satu produk yang memiliki penjualan terbanyak pada 2005.Di banyak bagian dunia, frekuensi yang digunakan oleh Wi-Fi, pengguna tidak diperlukan untuk mendapatkan ijin dari pengatur lokal (misal, Komisi Komunikasi Federal di A.S.). 802.11a menggunakan frekuensi yang lebih tinggi dan oleh sebab itu daya jangkaunya lebih sempit, lainnya sama.

Versi Wi-Fi yang paling luas dalam pasaran AS sekarang ini (berdasarkan dalam IEEE 802.11b/g) beroperasi pada 2.400 MHz sampai 2.483,50 MHz. Dengan begitu mengijinkan operasi dalam 11 channel (masing-masing 5 MHz), berpusat di frekuensi berikut:

* Channel 1 - 2,412 MHz;
* Channel 2 - 2,417 MHz;
* Channel 3 - 2,422 MHz;
* Channel 4 - 2,427 MHz;
* Channel 5 - 2,432 MHz;
* Channel 6 - 2,437 MHz;
* Channel 7 - 2,442 MHz;
* Channel 8 - 2,447 MHz;
* Channel 9 - 2,452 MHz;
* Channel 10 - 2,457 MHz;
* Channel 11 - 2,462 MHz

Secara teknis operasional, Wi-Fi merupakan salah satu varian teknologi komunikasi dan informasi yang bekerja pada jaringan dan perangkat WLAN (wireless local area network). Dengan kata lain, Wi-Fi adalah sertifikasi merek dagang yang diberikan pabrikan kepada perangkat telekomunikasi (internet) yang bekerja di jaringan WLAN dan sudah memenuhi kualitas kapasitas interoperasi yang dipersyaratkan.

Teknologi internet berbasis Wi-Fi dibuat dan dikembangkan sekelompok insinyur Amerika Serikat yang bekerja pada Institute of Electrical and Electronis Engineers (IEEE) berdasarkan standar teknis perangkat bernomor 802.11b, 802.11a dan 802.16. Perangkat Wi-Fi sebenarnya tidak hanya mampu bekerja di jaringan WLAN, tetapi juga di jaringan Wireless Metropolitan Area Network (WMAN).

Karena perangkat dengan standar teknis 802.11b diperuntukkan bagi perangkat WLAN yang digunakan di frekuensi 2,4 GHz atau yang lazim disebut frekuensi ISM (Industrial, Scientific dan Medical). Sedang untuk perangkat yang berstandar teknis 802.11a dan 802.16 diperuntukkan bagi perangkat WMAN atau juga disebut Wi-Max, yang bekerja di sekitar pita frekuensi 5 GHz.

Tingginya animo masyarakat --khususnya di kalangan komunitas Internet-- menggunakan teknologi Wi-Fi dikarenakan paling tidak dua faktor. Pertama, kemudahan akses. Artinya, para pengguna dalam satu area dapat mengakses Internet secara bersamaan tanpa perlu direpotkan dengan kabel.

Konsekuensinya, pengguna yang ingin melakukan surfing atau browsing berita dan informasi di Internet, cukup membawa PDA (pocket digital assistance) atau laptop berkemampuan Wi-Fi ke tempat dimana terdapat access point atau hotspot.

Menjamurnya hotspot di tempat-tempat tersebut --yang dibangun oleh operator telekomunikasi, penyedia jasa Internet bahkan orang perorangan-- dipicu faktor kedua, yakni karena biaya pembangunannya yang relatif murah atau hanya berkisar 300 dollar Amerika Serikat.

Peningkatan kuantitas pengguna Internet berbasis teknologi Wi-Fi yang semakin menggejala di berbagai belahan dunia, telah mendorong Internet service providers (ISP) membangun hotspot yang di kota-kota besar dunia.

Beberapa pengamat bahkan telah memprediksi pada tahun 2006, akan terdapat hotspot sebanyak 800.000 di negara-negara Eropa, 530.000 di Amerika Serikat dan satu juta di negara-negara Asia.

Keseluruhan jumlah penghasilan yang diperoleh Amerika Serikat dan negara-negara Eropa dari bisnis Internet berbasis teknologi Wi-Fi hingga akhir tahun 2003 diperkirakan berjumlah 5.4 trilliun dollar Amerika, atau meningkat sebesar 33 milyar dollar Amerika dari tahun 2002 (www.analysys.com).

Wi-fi Hardware
Hardware wi-fi yang ada di pasaran saat ini ada berupa :

* PCI
* USB
* PCMCIA
* Compact Flash

Mode Akses Koneksi Wi-fi
Ada 2 mode akses koneksi Wi-fi, yaitu:
1. Add-Hoc
Mode koneksi ini adalah mode dimana beberapa komputer terhubung secara langsung, atau lebih dikenal dengan istilah Peer-to-Peer. Keuntungannya, lebih murah dan praktis bila yang terkoneksi hanya 2 atau 3 komputer, tanpa harus membeli access point.
2. Infrastruktur
Menggunakan Access Point yang berfungsi sebagai pengatur lalu lintas data, sehingga memungkinkan banyak Client dapat saling terhubung melalui jaringan (Network).
Sistem Keamanan Wi-fi

Terdapat beberapa jenis pengaturan keamanan jaringan Wi-fi, antara lain:

1. WPA Pre-Shared Key
2. WPA RADIUS
3. WPA2 Pre-Shared Key Mixed
4. WPA2 RADIUS Mixed
5. RADIUS
6. WEP

Read More..

Selasa, 27 Oktober 2009

Sekilas Tentang WIMAX

WiMAX (Worldwide Interoperability for Microwave Access) adalah sebuah tanda sertifikasi untuk produk-produk yang lulus tes cocok dan sesuai dengan standar IEEE 802.16. WiMAX merupakan teknologi nirkabel yang menyediakan hubungan jalur lebar dalam jarak jauh. WiMAX merupakan teknologi broadband yang memiliki kecepatan akses yang tinggi dan jangkauan yang luas. WiMAX merupakan evolusi dari teknologi BWA sebelumnya dengan fitur-fitur yang lebih menarik. Disamping kecepatan data yang tinggi mampu diberikan, WiMAX juga membawa isu open standar. Dalam arti komunikasi perangkat WiMAX diantara beberapa vendor yang berbeda tetap dapat dilakukan (tidak proprietary). Dengan kecepatan data yang besar (sampai 70 MBps), WiMAX layak diaplikasikan untuk ‘last mile’ broadband connections, backhaul, dan high speed enterprise.

Yang membedakan WiMAX dengan Wi-Fi adalah standar teknis yang bergabung di dalamnya. Jika WiFi menggabungkan standar IEEE 802.11 dengan ETSI (European Telecommunications Standards Intitute) HiperLAN sebagai standar teknis yang cocok untuk keperluan WLAN, sedangkan WiMAX merupakan penggabungan antara standar IEEE 802.16 dengan standar ETSI HiperMAN.

Standar keluaran IEEE banyak digunakan secara luas di daerah asalnya, Amerika, sedangkan standar keluaran ETSI meluas penggunaannya di daerah Eropa dan sekitarnya. Untuk membuat teknologi ini dapat digunakan secara global, maka diciptakanlah WiMAX. Kedua standar yang disatukan ini merupakan standar teknis yang memiliki spesifikasi yang sangat cocok untuk menyediakan koneksi berjenis broadband lewat media wireless atau dikenal dengan BWA.

Spektrum Frekuensi WiMAX

Sebagai teknologi yang berbasis pada frekuensi, kesuksesan WiMAX sangat bergantung pada ketersediaan dan kesesuaian spektrum frekuensi. Sistem wireless mengenal dua jenis band frekuensi yaitu Licensed Band dan Unlicensed Band. Licensed band membutuhkan lisensi atau otoritas dari regulator, yang mana operator yang memperoleh licensed band diberikan hak eksklusif untuk menyelenggarakan layanan dalam suatu area tertentu. Sementara Unlicensed Band yang tidak membutuhkan lisensi dalam penggunaannya memungkinkan setiap orang menggunakan frekuensi secara bebas di semua area.

WiMAX Forum menetapkan 2 band frekuensi utama pada certication profile untuk Fixed WiMAX (band 3.5 GHz dan 5.8 GHz), sementara untuk Mobile WiMAX ditetapkan 4 band frekuensi pada system profile release-1, yaitu band 2.3 GHz, 2.5 GHz, 3.3 GHz dan 3.5 GHz.

Secara umum terdapat beberapa alternatif frekuensi untuk teknologi WiMAX sesuai dengan peta frekuensi dunia. Dari alternatif tersebut band frekuensi 3,5 GHz menjadi frekuensi mayoritas Fixed WiMAX di beberapa negara, terutama untuk negara-negara di Eropa, Canada, Timur-Tengah, Australia dan sebagian Asia. Sementara frekuensi yang mayoritas digunakan untuk Mobile WiMAX adalah 2,5 GHz.

Isu frekuensi Fixed WiMAX di band 3,3 GHz ternyata hanya muncul di negara-negara Asia. Hal ini terkait dengan penggunaan band 3,5 GHz untuk komunikasi satelit, demikian juga dengan di Indonesia. Band 3,5 GHz di Indonesia digunakan oleh satelit Telkom dan PSN untuk memberikan layanan IDR dan broadcast TV. Dengan demikian penggunaan secara bersama antara satelit dan wireless terrestrial (BWA) di frekuensi 3,5 GHz akan menimbulkan potensi interferensi terutama di sisi satelit.

Elemen Perangkat WiMAX

Elemen/ perangkat WiMAX secara umum terdiri dari BS di sisi pusat dan CPE di sisi pelanggan. Namun demikian masih ada perangkat tambahan seperti antena, kabel dan asesoris lainnya.

Base Station (BS)

Merupakan perangkat transceiver (transmitter dan receiver) yang biasanya dipasang satu lokasi (colocated) dengan jaringan Internet Protocol (IP). Dari BS ini akan disambungkan ke beberapa CPE dengan media interface gelombang radio (RF) yang mengikuti standar WiMAX. Komponen BS terdiri dari:

* NPU (networking processing unit card)
* AU (access unit card)up to 6 +1
* PIU (power interface unit) 1+1
* AVU (air ventilation unit)
* PSU (power supply unit) 3+1

Antena

Antena yang dipakai di BS dapat berupa sektor 60°, 90°, atau 120° tergantung dari area yang akan dilayani.

Subscriber Station (SS)

Secara umum Subscriber Station (SS) atau (Customer Premises Equipment) CPE terdiri dari Outdoor Unit (ODU) dan Indoor Unit (IDU), perangkat radionya ada yang terpisah dan ada yang terintegrasi dengan antena.

Teknologi WiMAX dan Layanannya

BWA WiMAX adalah standards-based technology yang memungkinkan penyaluran akses broadband melalui penggunaan wireless sebagai komplemen wireline. WiMAX menyediakan akses last mile secara fixed, nomadic, portable dan mobile tanpa syarat LOS (NLOS) antara user dan base station. WiMAX juga merupakan sistem BWA yang memiliki kemampuan interoperabilty antar perangkat yang berbeda. WiMAX dirancang untuk dapat memberikan layanan Point to Multipoint (PMP) maupun Point to Point (PTP). Dengan kemampuan pengiriman data hingga 10 Mbps/user.

Pengembangan WiMAX berada dalam range kemampuan yang cukup lebar. Fixed WiMAX pada prinsipnya dikembangkan dari sistem WiFi, sehingga keterbatasan WiFi dapat dilengkapi melalui sistem ini, terutama dalam hal coverage/jarak, kualitas dan garansi layanan (QoS). Sementara itu Mobile WiMAX dikembangkan untuk dapat mengimbangi teknologi selular seperti GSM, CDMA 2000 maupun 3G. Keunggulan Mobile WiMAX terdapat pada konfigurasi sistem yang jauh lebih sederhana serta kemampuan pengiriman data yang lebih tinggi. Oleh karena itu sistem WiMAX sangat mungkin dan mudah diselenggarakan oleh operator baru atau pun service provider skala kecil. Namun demikian kemampuan mobility dari Mobile WiMAX masih berada dibawah kemampuan teknologi selular.

Tinjauan Teknologi

WiMax adalah istilah yang digunakan untuk menggambarkan standar dan implementasi yang mampu beroperasi berdasarkan jaringan nirkabel IEEE 802.16, seperti WiFi yang beroperasi berdasarkan standar Wireless LAN IEEE802.11. Namun, dalam implementasinya WiMax sangat berbeda dengan WiFi.

Pada WiFi, sebagaimana OSI Layer, adalah standar pada lapis kedua, dimana Media Access Control (MAC) menggunakan metode akses kompetisi, yaitu dimana beberapa terminal secara bersamaan memperebutkan akses. Sedangkan MAC pada WiMax menggunakan metode akses yang berbasis algoritma penjadualan (scheduling algorithm). Dengan metode akses kompetisi, maka layanan seperti Voice over IP atau IPTV yang tergantung kepada Kualitas Layanan (Quality of Service) yang stabil menjadi kurang baik. Sedangkan pada WiMax, dimana digunakan algoritma penjadualan, maka bila setelah sebuah terminal mendapat garansi untuk memperoleh sejumlah sumber daya (seperti timeslot), maka jaringan nirkabel akan terus memberikan sumber daya ini selama terminal membutuhkannya.

Standar WiMax pada awalnya dirancang untuk rentang frekuensi 10 s.d. 66 GHz. 802.16a, diperbaharui pada 2004 menjadi 802.16-2004 (dikenal juga dengan 802.16d) menambahkan rentang frekuensi 2 s.d. 11 GHz dalam spesifikasi. 802.16d dikenal juga dengan fixed WiMax, diperbaharui lagi menjadi 802.16e pada tahun 2005 (yang dikenal dengan mobile WiMax) dan menggunakan orthogonal frequency-division multiplexing (OFDM) yang lebih memiliki skalabilitas dibandingkan dengan standar 802.16d yang menggunakan OFDM 256 sub-carriers. Penggunaan OFDM yang baru ini memberikan keuntungan dalam hal cakupang, instalasi, konsumsi daya, penggunaan frekuensi dan efisiensi pita frekuensi. WiMax yang menggunakan standar 802.16e memiliki kemampuan hand over atau hand off, sebagaimana layaknya pada komunikasi selular.

Banyaknya institusi yang tertarik atas standar 802.16d dan .16e karena standar ini menggunakan frekuensi yang lebih rendah sehingga lebih baik terhadap redaman dan dengan demikian memiliki daya penetrasi yang lebih baik di dalam gedung. Pada saat ini, sudah ada jaringan yang secara komersial menggunakan perangkat WiMax bersertifikasi sesuai dengan standar 802.162.

Spesifikasi WiMax membawa perbaikan atas keterbatasan-keterbatasan standar WiFi dengan memberikan lebar pita yang lebih besar dan enkripsi yang lebih bagus. Standar WiMax memberikan koneksi tanpa memerlukan Line of Sight (LOS) dalam situasi tertentu. Propagasi Non LOS memerlukan standar .16d atau revisi 16.e, karena diperlukan frekuensi yang lebih rendah. Juga, perlu digunakan sinyal muli-jalur (multi-path signals), sebagaimana standar 802.16n.

Manfaat dan Keuntungan

Banyak keuntungan yang didapatkan dari terciptanya standardisasi industri ini. Para operator telekomunikasi dapat menghemat investasi perangkat, karena kemampuan WiMAX dapat melayani pelanggannya dengan area yang lebih luas dan tingkat kompatibilitas lebih tinggi. Selain itu, pasarnya juga lebih meluas karena WiMAX dapat mengisi celah broadband yang selama ini tidak terjangkau oleh teknologi Cable dan DSL (Digital Subscriber Line).

WiMAX salah satu teknologi memudahkan mereka mendapatkan koneksi Internet yang berkualitas dan melakukan aktivitas. Sementara media wireless selama ini sudah terkenal sebagai media yang paling ekonomis dalam mendapatkan koneksi Internet. Area coverage-nya sejauh 50 km maksimal dan kemampuannya menghantarkan data dengan transfer rate yang tinggi dalam jarak jauh, sehingga memberikan kontribusi sangat besar bagi keberadaan wireless MAN dan dapat menutup semua celah broadband yang ada saat ini. Dari segi kondisi saat proses komunikasinya, teknologi WiMAX dapat melayani para subscriber, baik yang berada dalam posisi Line Of Sight (posisi perangkat-perangkat yang ingin berkomunikasi masih berada dalam jarak pandang yang lurus dan bebas dari penghalang apa pun di depannya) dengan BTS maupun yang tidak memungkinkan untuk itu (Non-Line Of Sight). Jadi di mana pun para penggunanya berada, selama masih masuk dalam area coverage sebuah BTS (Base Transceiver Stations), mereka mungkin masih dapat menikmati koneksi yang dihantarkan oleh BTS tersebut.

Selain itu, dapat melayani baik para pengguna dengan antena tetap (fixed wireless) misalnya di gedung-gedung perkantoran, rumah tinggal, toko-toko, dan sebagainya, maupun yang sering berpindah-pindah tempat atau perangkat mobile lainnya. Mereka bisa merasakan nikmatnya ber-Internet broadband lewat media ini. Sementara range spektrum frekuensi yang tergolong lebar, maka para pengguna tetap dapat terkoneksi dengan BTS selama mereka berada dalam range frekuensi operasi dari BTS.

Sistem kerja MAC-nya (Media Access Control) yang ada pada Data Link Layer adalah connection oriented, sehingga memungkinkan penggunanya melakukan komunikasi berbentuk video dan suara. Siapa yang tidak mau, ber-Internet murah, mudah, dan nyaman dengan kualitas broadband tanpa harus repot-repot. Anda tinggal memasang PCI card yang kompatibel dengan standar WiMAX, atau tinggal membeli PCMCIA (Personal Computer Memory Card International Association) yang telah mendukung komunikasi dengan WiMAX. Atau mungkin Anda tinggal membeli antena portabel dengan interface ethernet yang bisa dibawa ke mana-mana untuk mendapatkan koneksi Internet dari BTS untuk fixed wireless.

Read More..

Senin, 12 Oktober 2009

Cara Membuat Router Redhat 9

Pertama yang harus di lakukan adalah mensetting serv(gateway utama) supaya bisa terhubung ke internet.
Sebelum Mensetting :

Langkah 1

Minta IP public ke ISP lengkap dengan netmask,broadcast dan dns nya misalnya :
IP: 202.169.227.45
GATEWAY : 202.169.227.1
Nemast: 255.255.255.192
broadcast : 202.169.227.63
DNS1: 202.168.244.3
DNS2: 202.168.244.4

Langkah 2

Menentukan IP local yang akan kita gunakan buat client
IP: 192.168.0.2 - 192.168.0.254
GATEWAY: 192.168.0.1
NETMASK: 255.255.255.0
BROADCAST: 192.168.0.255
DNS1: 202.168.244.3
DNS2: 202.168.244.4

Langkah 3

Setting IP serv :
[root@serv root]$ vi /etc/sysconfig/network
untuk mengedit dengan menggunakan editor vi (baca: vi-ai) tekan tombol i atau insert untuk memulai mengedit.
lalu isi dengan :

NETWORKING=yes
HOSTNAME=serv.domain.com
GATEWAY=202.169.227.1

lalu simpan dengan menekan :wq

Langkah 4

Menconfigurasi IP eth0(default)

[root@serv root]$ vi /etc/sysconfig/network-scripts/ifcfg-eth0
untuk mengedit dengan menggunakan editor vi (baca: vi-ai) tekan tombol i atau insert untuk memulai mengedit.
lalu isi dengan :

DEVICE=eth0
BOOTPROTO=static
IPADDR=202.169.227.45
BROADCAST=202.169.227.63
NETMASK=255.255.255.192
ONBOOT=yes
USERCTL=no

lalu simpan dengan menekan :wq

Langkah 5

Setting dns resolve

[root@serv root]$ vi /etc/resolve.conf
untuk mengedit dengan menggunakan editor vi (baca: vi-ai) tekan tombol i atau insert untuk memulai mengedit.
lalu isi dengan nameserver dari isp kita tadi :

nameserver 202.168.244.3
nameserver 202.168.244.4

lalu simpan dengan menekan :wq

Langkah 6

konfigurasi IP eth1
[root@serv root]$ vi /etc/sysconfig/network-scripts/ifcfg-eth1
untuk mengedit dengan menggunakan editor vi (baca: vi-ai) tekan tombol i atau insert untuk memulai mengedit.
lalu isi dengan :

DEVICE=eth1
BOOTPROTO=static
IPADDR=192.168.0.1
BROADCAST=192.168.0.255
NETMASK=255.255.255.0
ONBOOT=yes
USERCTL=no

lalu simpan dengan menekan :wq

Langkah 7

Setting ip_forwarding dan masquerading.

[root@serv root]$ vi /etc/rc.d/rc.local
untuk mengedit dengan menggunakan editor vi (baca: vi-ai) tekan tombol i atau insert untuk memulai mengedit.
lalu isi dengan :

echo “1″ > /proc/sys/net/ipv4/ip_forward
/sbin/iptables -t nat -A POSROUTING -s 192.168.0.0/24 [eth0 -j MASQUERADE

Langkah 8

restart network

[root@serv root]$ service network restart
Shutting down interface eth0: [ OK ]
Shutting down interface eth1: [ OK ]
Shutting down loopback interface: [ OK ]
Disabling IPv4 packet forwarding: [ OK ]
Setting network parameters: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface eth0: [ OK ]
Bringing up interface eth1: [ OK ]

Langkah 9

testing dengan ping ke default gateway 202.169.227.1

[root@serv root]$ ping 202.169.227.1
64 bytes from 202.169.227.1 : icmp_seq=1 time=15.4 ms
64 bytes from 202.169.227.1 : icmp_seq=2 time=15.4 ms
64 bytes from 202.169.227.1 : icmp_seq=3 time=15.4 ms
64 bytes from 202.169.227.1 : icmp_seq=4 time=15.4 ms
64 bytes from 202.169.227.1 : icmp_seq=5 time=15.4 ms
64 bytes from 202.169.227.1 : icmp_seq=6 time=15.4 ms
64 bytes from 202.169.227.1 : icmp_seq=7 time=15.4 ms
—– 202.169.227.1 ping statistic —–
6 packets transmites, 6 received, 0% packet loss, time 3049ms

Langkah 10

Testing dengan cara ping ip eth1
[root@serv root]$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=63 time=0.356 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=63 time=0.269 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=63 time=0.267 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=63 time=0.268 ms

— 192.168.0.1 ping statistics —
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.267/0.290/0.356/0.038 ms

Langkah 11

Tinggal Setting IP computer client dengan ketentuan di bawah ini :

IP: 192.168.0.2 - 192.168.0.254
GATEWAY: 192.168.0.1
NETMASK: 255.255.255.0
BROADCAST: 192.168.0.255
DNS1: 202.168.244.3
DNS2: 202.168.244.4

misal :

Client01
===============================
IP: 192.168.0.2
GATEWAY: 192.168.0.1
NETMASK: 255.255.255.0
BROADCAST: 192.168.0.255
NAMESERVER: 192.168.0.1

Client02
===============================
IP: 192.168.0.3
GATEWAY: 192.168.0.1
NETMASK: 255.255.255.0
BROADCAST: 192.168.0.255
NAMESERVER: 192.168.0.1

dan seterusnya sesuai banyaknya client,yang berubah hanya IP
untuk client windows maka setting IP di bagian Start Menu/Setting/Control Panel/Network

Langkah 12

setelah di setting ip client, maka
- ping ke 192.168.0.1 dari client,kalau berhasil berarti client dan router nya sudah tersambung.
- ping ke 202.169.227.45 dari client, kalau berhasil maka fungsi masquerading yang terletak di /etc/rc.d/rc/local telah bekerja dengan baik
namun jika tidak bisa maka Anda harus menjalankan fungsi masquerading yang terletak di /etc/rc.d/rc.local dengan cara :
.- anda bekerja menggunakan router yang anda buat tadi.
.- masuk ke account root
.- jalankan perintah berikut ini, tiap akhir perintah akhiri dengan menekan enter :
[root@serv root]# service network restart
[root@serv root]# /etc/rc.d/rc.local
jika sudah, coba ping ping ke 202.169.227.45 dari client
- selanjutnya ping ke default gateway 202.169.227.1 dari client
- ping ke 202.168.244.3 dari client
- ping ke 202.168.244.4 dari client


Read More..

Sabtu, 03 Oktober 2009

Jaringan Komputer 2

Netstat (NETwork STATistics) adalah suatu tool berbasis command line yang digunakan untuk mengetahui konfigurasi suatu jaringan dan aktivitas yang sedang terjadi di jaringan tersebut, serta statistiknya.

Fungsi-fungsi dari netstat bermacam-macam, diantaranya :

a. Untuk menampilkan routing table
b. Untuk menampilkan statistik interface
c. Untuk menampilkan informasi tambahan interface
d. Untuk menamplikan soket network
e. Untuk menampilkan semua soket yg open
f. Untuk menampilkan semua soket yg listen
g. Untuk menampilkan kesimpulan statistik dari tiap protocol

Netstat command mendisplay informasi mengenai trafik pada jaringan interfaces, meliputi:

* Alamat dari blok protocol kendali yang tergabung dengan soket dan status dari semua soket.
* Banyaknya paket yang diterima, ditransmisi, dan di-drop pada suatu subsistem telekomunikasi.
* Statistik kumulatis tiap interface.
* Route dan status-statusnya.

Enkapsulasi adalah suatu mekanisme untuk menyembunyikan atau memproteksi suatu proses dari kemungkinan interferensi atau penyalahgunaan dari luar sistem sekaligus menyederhanakan penggunaan system itu sendiri. Akses ke internal sistem diatur sedemikian rupa melalui seperangkat interface.

Enkapsulasi mempunyai dua hal mendasar, yaitu :
· Information hiding
· Interface to acces data

Encapsulasi memiliki beberapa keuntungan:

a. Modularitas. Hal ini membuat objek dapat dikelola secara independen.

b. Informasi yang tersembunyi. Hal ini akan memudahkan pengguna class, karena untuk setiap objek tentu sudah disediakan interface yang akan digunakan untuk berkomunikasi dengan objek lain, tanpa perlu tahu detil kode atau informasi yang tersembunyi di dalamnya.

proses enkapsulasi adalah sebagai berikut:

1) Pertama-tama data dibuat oleh Host A. Kemudian data tersebut turun dari Application layer sampai ke physical layer (dalam proses ini data akan ditambahkan header setiap turun 1 lapisan kecuali pada Physical layer, sehingga terjadi enkapsulasi sempurna).

2) Data keluar dari host A menuju kabel dalam bentuk bit (kabel bekerja pada Physical layer).

3) Data masuk ke hub, tetapi data dalam bentuk bit tersebut tidak mengalami proses apa-apa karena hub bekerja pada Physical layer.

4) Setelah data keluar dari hub, data masuk ke switch. Karena switch bekerja pada Datalink layer/ layer 2, maka data akan naik sampai layer 2 kemudian dilakukan proses, setelah itu data turun dari layer 2 kembali ke layer 1/ phisycal layer.

5) Setelah data keluar dari switch, data masuk ke router. Karena router bekerja pada layer 3/ Network layer, maka data naik sampai layer 3 kemudian dilakukan proses, setelah itu data turun dari layer 3 kembali ke layer 1 , dan data keluar dari router menuju kabel dalam bentuk bit.

6) Pada akhirnya data sampai pada host B. Data dalam bentuk bit naik dari layer 1 sampai layer 7. Dalam proses ini data yang dibungkus oleh header-header layer OSI mulai dilepas satu persatu sesuai dengan lapisannya (berlawanan dengan proses no 1 ). Setalah data sampai di layer 7 maka data siap dipakai oleh host B.




Read More..

Selasa, 07 April 2009

Pengertian Subnetting dan perhitungannya

subnetrouter.JPGSubnetting adalah termasuk materi yang banyak keluar di ujian CCNA dengan berbagai variasi soal. Juga menjadi momok bagi student atau instruktur yang sedang menyelesaikan kurikulum CCNA 1 program CNAP (Cisco Networking Academy Program). Untuk menjelaskan tentang subnetting, saya biasanya menggunakan beberapa ilustrasi dan analogi yang sudah kita kenal di sekitar kita. Artikel ini sengaja saya tulis untuk rekan-rekan yang sedang belajar jaringan, yang mempersiapkan diri mengikuti ujian CCNA, dan yang sedang mengikuti pelatihan CCNA 1.Setelah selesai membaca ini, silakan lanjutkan dengan artikel Penghitungan Subnetting, Siapa Takut?.

Sebenarnya subnetting itu apa dan kenapa harus dilakukan? Pertanyaan ini bisa dijawab dengan analogi sebuah jalan. Jalan bernama Gatot Subroto terdiri dari beberapa rumah bernomor 01-08, dengan rumah nomor 08 adalah rumah Ketua RT yang memiliki tugas mengumumkan informasi apapun kepada seluruh rumah di wilayah Jl. Gatot Subroto.

jalan.jpg

Ketika rumah di wilayah itu makin banyak, tentu kemungkinan menimbulkan keruwetan dan kemacetan. Karena itulah kemudian diadakan pengaturan lagi, dibuat gang-gang, rumah yang masuk ke gang diberi nomor rumah baru, masing-masing gang ada Ketua RTnya sendiri-sendiri. Sehingga ini akan memecahkan kemacetan, efiesiensi dan optimalisasi transportasi, serta setiap gang memiliki previledge sendiri-sendiri dalam mengelola wilayahnya. Jadilah gambar wilayah baru seperti di bawah:

gang.jpg

Konsep seperti inilah sebenarnya konsep subnetting itu. Disatu sisi ingin mempermudah pengelolaan, misalnya suatu kantor ingin membagi kerja menjadi 3 divisi dengan masing-masing divisi memiliki 15 komputer (host). Disisi lain juga untuk optimalisasi dan efisiensi kerja jaringan, karena jalur lalu lintas tidak terpusat di satu network besar, tapi terbagi ke beberapa ruas-ruas gang. Yang pertama analogi Jl Gatot Subroto dengan rumah disekitarnya dapat diterapkan untuk jaringan adalah seperti NETWORK ADDRESS (nama jalan) dan HOST ADDRESS (nomer rumah). Sedangkan Ketua RT diperankan oleh BROADCAST ADDRESS (192.168.1.255), yang bertugas mengirimkan message ke semua host yang ada di network tersebut.

network.jpg

Masih mengikuti analogi jalan diatas, kita terapkan ke subnetting jaringan adalah seperti gambar di bawah. Gang adalah SUBNET, masing-masing subnet memiliki HOST ADDRESS dan BROADCAST ADDRESS.

subnet.jpg

Terus apa itu SUBNET MASK? Subnetmask digunakan untuk membaca bagaimana kita membagi jalan dan gang, atau membagi network dan hostnya. Address mana saja yang berfungsi sebagai SUBNET, mana yang HOST dan mana yang BROADCAST. Semua itu bisa kita ketahui dari SUBNET MASKnya. Jl Gatot Subroto tanpa gang yang saya tampilkan di awal bisa dipahami sebagai menggunakan SUBNET MASK DEFAULT, atau dengan kata lain bisa disebut juga bahwa Network tersebut tidak memiliki subnet (Jalan tanpa Gang). SUBNET MASK DEFAULT ini untuk masing-masing Class IP Address adalah sbb:

CLASS OKTET PERTAMA SUBNET MAS DEFAULT PRIVATE ADDRESS
A 1-127 255.0.0.0 10.0.0.0-10.255.255.255
B 128-191 255.255.0.0 172.16.0.0-172.31.255.255
C 192-223 255.255.255.0 192.168.0.0-192.168.255.255

PERHITUNGAN SUBNETTING.

etelah anda membaca artikel Konsep Subnetting, Siapa Takut? dan memahami konsep Subnetting dengan baik. Kali ini saatnya anda mempelajari teknik penghitungan subnetting. Penghitungan subnetting bisa dilakukan dengan dua cara, cara binary yang relatif lambat dan cara khusus yang lebih cepat. Pada hakekatnya semua pertanyaan tentang subnetting akan berkisar di empat masalah: Jumlah Subnet, Jumlah Host per Subnet, Blok Subnet, dan Alamat Host- Broadcast.

Penulisan IP address umumnya adalah dengan 192.168.1.2. Namun adakalanya ditulis dengan 192.168.1.2/24, apa ini artinya? Artinya bahwa IP address 192.168.1.2 dengan subnet mask 255.255.255.0. Lho kok bisa seperti itu? Ya, /24 diambil dari penghitungan bahwa 24 bit subnet mask diselubung dengan binari 1. Atau dengan kata lain, subnet masknya adalah: 11111111.11111111.11111111.00000000 (255.255.255.0). Konsep ini yang disebut dengan CIDR (Classless Inter-Domain Routing) yang diperkenalkan pertama kali tahun 1992 oleh IEFT.

Pertanyaan berikutnya adalah Subnet Mask berapa saja yang bisa digunakan untuk melakukan subnetting? Ini terjawab dengan tabel di bawah:

Subnet Mask Nilai CIDR
255.128.0.0 /9
255.192.0.0 /10
255.224.0.0 /11
255.240.0.0 /12
255.248.0.0 /13
255.252.0.0 /14
255.254.0.0 /15
255.255.0.0 /16
255.255.128.0 /17
255.255.192.0 /18
255.255.224.0 /19
Subnet Mask Nilai CIDR
255.255.240.0 /20
255.255.248.0 /21
255.255.252.0 /22
255.255.254.0 /23
255.255.255.0 /24
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30

SUBNETTING PADA IP ADDRESS CLASS C

Ok, sekarang mari langsung latihan saja. Subnetting seperti apa yang terjadi dengan sebuah NETWORK ADDRESS 192.168.1.0/26 ?

Analisa: 192.168.1.0 berarti kelas C dengan Subnet Mask /26 berarti 11111111.11111111.11111111.11000000 (255.255.255.192).

Penghitungan: Seperti sudah saya sebutkan sebelumnya semua pertanyaan tentang subnetting akan berpusat di 4 hal, jumlah subnet, jumlah host per subnet, blok subnet, alamat host dan broadcast yang valid. Jadi kita selesaikan dengan urutan seperti itu:

  1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada oktet terakhir subnet mask (2 oktet terakhir untuk kelas B, dan 3 oktet terakhir untuk kelas A). Jadi Jumlah Subnet adalah 22 = 4 subnet
  2. Jumlah Host per Subnet = 2y - 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada oktet terakhir subnet. Jadi jumlah host per subnet adalah 26 - 2 = 62 host
  3. Blok Subnet = 256 - 192 (nilai oktet terakhir subnet mask) = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.
  4. Bagaimana dengan alamat host dan broadcast yang valid? Kita langsung buat tabelnya. Sebagai catatan, host pertama adalah 1 angka setelah subnet, dan broadcast adalah 1 angka sebelum subnet berikutnya.
  5. Subnet
    192.168.1.0
    192.168.1.64
    192.168.1.128
    192.168.1.192
    Host Pertama
    192.168.1.1
    192.168.1.65
    192.168.1.129
    192.168.1.193
    Host Terakhir
    192.168.1.62
    192.168.1.126
    192.168.1.190
    192.168.1.254
    Broadcast
    192.168.1.63
    192.168.1.127
    192.168.1.191
    192.168.1.255

Kita sudah selesaikan subnetting untuk IP address Class C. Dan kita bisa melanjutkan lagi untuk subnet mask yang lain, dengan konsep dan teknik yang sama. Subnet mask yang bisa digunakan untuk subnetting class C adalah seperti di bawah. Silakan anda coba menghitung seperti cara diatas untuk subnetmask lainnya.

Subnet Mask Nilai CIDR
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30

SUBNETTING PADA IP ADDRESS CLASS B

Berikutnya kita akan mencoba melakukan subnetting untuk IP address class B. Pertama, subnet mask yang bisa digunakan untuk subnetting class B adalah seperti dibawah. Sengaja saya pisahkan jadi dua, blok sebelah kiri dan kanan karena masing-masing berbeda teknik terutama untuk oktet yang “dimainkan” berdasarkan blok subnetnya. CIDR /17 sampai /24 caranya sama persis dengan subnetting Class C, hanya blok subnetnya kita masukkan langsung ke oktet ketiga, bukan seperti Class C yang “dimainkan” di oktet keempat. Sedangkan CIDR /25 sampai /30 (kelipatan) blok subnet kita “mainkan” di oktet keempat, tapi setelah selesai oktet ketiga berjalan maju (coeunter) dari 0, 1, 2, 3, dst.

Subnet Mask Nilai CIDR
255.255.128.0 /17
255.255.192.0 /18
255.255.224.0 /19
255.255.240.0 /20
255.255.248.0 /21
255.255.252.0 /22
255.255.254.0 /23
255.255.255.0 /24
Subnet Mask Nilai CIDR
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30

Ok, kita coba dua soal untuk kedua teknik subnetting untuk Class B. Kita mulai dari yang menggunakan subnetmask dengan CIDR /17 sampai /24. Contoh network address 172.16.0.0/18.

Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /18 berarti 11111111.11111111.11000000.00000000 (255.255.192.0).

Penghitungan:

  1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada 2 oktet terakhir. Jadi Jumlah Subnet adalah 22 = 4 subnet
  2. Jumlah Host per Subnet = 2y - 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir. Jadi jumlah host per subnet adalah 214 - 2 = 16.382 host
  3. Blok Subnet = 256 - 192 = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.
  4. Alamat host dan broadcast yang valid?
  5. Subnet

    172.16.0.0
    172.16.64.0
    172.16.128.0
    172.16.192.0
    Host Pertama
    172.16.0.1
    172.16.64.1
    172.16.128.1
    172.16.192.1
    Host Terakhir
    172.16.63.254
    172.16.127.254
    172.16.191.254
    172.16.255.254
    Broadcast
    172.16.63.255
    172.16.127.255
    172.16.191.255
    172.16..255.255

Berikutnya kita coba satu lagi untuk Class B khususnya untuk yang menggunakan subnetmask CIDR /25 sampai /30. Contoh network address 172.16.0.0/25.

Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /25 berarti 11111111.11111111.11111111.10000000 (255.255.255.128).

Penghitungan:

  1. Jumlah Subnet = 29 = 512 subnet
  2. Jumlah Host per Subnet = 27 - 2 = 126 host
  3. Blok Subnet = 256 - 128 = 128. Jadi lengkapnya adalah (0, 128)
  4. Alamat host dan broadcast yang valid?

Subnet

172.16.0.0 172.16.0.128 172.16.1.0 172.16.255.128
Host Pertama 172.16.0.1 172.16.0.129 172.16.1.1 172.16.255.129
Host Terakhir 172.16.0.126 172.16.0.254 172.16.1.126 172.16.255.254
Broadcast 172.16.0.127 172.16.0.255 172.16.1.127 172.16.255.255

Masih bingung juga? Ok sebelum masuk ke Class A, coba ulangi lagi dari Class C, dan baca pelan-pelan ;)

SUBNETTING PADA IP ADDRESS CLASS A

Kalau sudah mantab dan paham, kita lanjut ke Class A. Konsepnya semua sama saja. Perbedaannya adalah di OKTET mana kita mainkan blok subnet. Kalau Class C di oktet ke 4 (terakhir), kelas B di Oktet 3 dan 4 (2 oktet terakhir), kalau Class A di oktet 2, 3 dan 4 (3 oktet terakhir). Kemudian subnet mask yang bisa digunakan untuk subnetting class A adalah semua subnet mask dari CIDR /8 sampai /30.

Kita coba latihan untuk network address 10.0.0.0/16.

Analisa: 10.0.0.0 berarti kelas A, dengan Subnet Mask /16 berarti 11111111.11111111.00000000.00000000 (255.255.0.0).

Penghitungan:

  1. Jumlah Subnet = 28 = 256 subnet
  2. Jumlah Host per Subnet = 216 - 2 = 65534 host
  3. Blok Subnet = 256 - 255 = 1. Jadi subnet lengkapnya: 0,1,2,3,4, etc.
  4. Alamat host dan broadcast yang valid?

Subnet

10.0.0.0 10.1.0.0 10.254.0.0 10.255.0.0
Host Pertama 10.0.0.1 10.1.0.1 10.254.0.1 10.255.0.1
Host Terakhir 10.0.255.254 10.1.255.254 10.254.255.254 10.255.255.254
Broadcast 10.0.255.255 10.1.255.255 10.254.255.255 10.255.255.255

Mudah-mudahan sudah setelah anda membaca paragraf terakhir ini, anda sudah memahami penghitungan subnetting dengan baik. Kalaupun belum paham juga, anda ulangi terus artikel ini pelan-pelan dari atas. Untuk teknik hapalan subnetting yang lebih cepat, tunggu di artikel berikutnya ;)

Catatan: Semua penghitungan subnet diatas berasumsikan bahwa IP Subnet-Zeroes (dan IP Subnet-Ones) dihitung secara default. Buku versi terbaru Todd Lamle dan juga CCNA setelah 2005 sudah mengakomodasi masalah IP Subnet-Zeroes (dan IP Subnet-Ones) ini. CCNA pre-2005 tidak memasukkannya secara default (meskipun di kenyataan kita bisa mengaktifkannya dengan command ip subnet-zeroes), sehingga mungkin dalam beberapa buku tentang CCNA serta soal-soal test CNAP, anda masih menemukan rumus penghitungan Jumlah Subnet = 2x - 2



Read More..

Minggu, 29 Maret 2009

Perbedaan antara kabel Straight dan cross

Untuk menghubungkan dua buah komputer atau menghubungkan dua buah HUB/Switch dengan kabel UTP, dapat menggunakan kabel crossover. Jika mau menghubungkan komputer ke HUB/Switch, gunakan kabel straight.

Dalam pengkabelan straight dan cross, kita bisa lihat standar yang sudah ditetapkan untuk masalah pengkabelan ini, EIA/TIA 568A dan EIA/TIA 568B.

EIA/TIA 568A --- EIA/TIA 568B


Kabel Straight
Kabel straight adalah istilah untuk kabel yang menggunakan standar yang sama pada kedua ujung kabelnya, bisa EIA/TIA 568A atau EIA/TIA 568B pada kedua ujung kabel. Sederhananya, urutan warna pada kedua ujung kabel sama. Pada kabel straight, pin 1 di salah satu ujung kabel terhubung ke pin 1 pada ujung lainnya, pin 2 terhubung ke pin 2 di ujung lainnya, dan seterusnya.

Jadi, ketika PC mengirim data pada pin 1 dan 2 lewat kabel straight ke Switch, Switch menerima data pada pin 1 dan 2. Nah, karena pin 1 dan 2 pada switch tidak akan digunakan untuk mengirim data sebagaimana halnya pin 1 dan 2 pada PC, maka Switch
menggunakan pin 3 dan 6 untuk mengirim data ke PC, karena PC menerima data pada pin 3 dan 6.

Lebih detailnya, lihat gambar berikut : [klik untuk memperbesar]

Kabel Straight

Penggunaan kabel straight :
menghubungkan komputer ke port biasa di Switch.
menghubungkan komputer ke port LAN modem cable/DSL.
menghubungkan port WAN router ke port LAN modem cable/DSL.
menghubungkan port LAN router ke port uplink di Switch.
menghubungkan 2 HUB/Switch dengan salah satu HUB/Switch menggunakan port uplink dan yang lainnya menggunakan port biasa

Kabel crossover
Kabel crossover menggunakan EIA/TIA 568A pada salah satu ujung kabelnya dan EIA/TIA 568B pada ujung kabel lainnya.

Kabel Crossover

Pada gambar, pin 1 dan 2 di ujung A terhubung ke pin 3 dan 6 di ujung B, begitu pula pin 1 dan 2 di ujung B yang terhubung ke pin 3 dan 6 di ujung A. Jadi, pin 1 dan 2 pada setiap ujung kabel digunakan untuk mengirim data, sedangkan pin 3 dan 6 pada setiap ujung kabel digunakan untuk menerima data, karena pin 1 dan 2 saling terhubung secara berseberangan dengan pin 3 dan 6.

Untuk mengenali sebuah kabel apakah crossover ataupun straight adalah dengan hanya melihat salah satu ujung kabel. Jika urutan warna kabel pada pin 1 adalah Putih Hijau, maka kabel tersebut adalah kabel crossover (padahal jika ujung yang satunya lagi juga memiliki urutan warna yang sama yaitu Putih Hijau sebagai pin 1, maka kabel tersebut adalah kabel Straight). Tapi untungnya, kebanyakan kabel menggunakan standar EIA/TIA 568B pada kedua ujung kabelnya.

Penggunaan kabel crossover :
menghubungkan 2 buah komputer secara langsung
menghubungkan 2 buah HUB/Switch menggunakan port biasa diantara kedua HUB/Switch.
menghubungkan komputer ke port uplink Switch
menghubungkan port LAN router ke port biasa di HUB/Switch

Port biasa VS Port uplink
Untuk menghubungkan dua buah HUB/Switch atau menghubungkan dua buah komputer secara langsung dibutuhkan kabel crossover. Tapi jika HUB/Switch atau Network Interface Card (NIC) atau peralatan network lainnya menyediakan Uplinkport atau MDI/MDI-X anda bisa menggunakan kabel straight untuk menghubungkan ke port biasa di HUB/Switch atau Network Interface Card atau peralatan network lainnya.



catatan dari : SoloCyberCity


Read More..

Kamis, 26 Maret 2009

7 Layer OSI pada jaringan

Pengantar Model Open Systems Interconnection(OSI)

Model Open Systems Interconnection (OSI) diciptakan oleh International Organization for Standardization (ISO) yang menyediakan kerangka logika terstruktur bagaimana proses komunikasi data berinteraksi melalui jaringan. Standard ini dikembangkan untuk industri komputer agar komputer dapat berkomunikasi pada jaringan yang berbeda secara efisien.

Model Layer OSI

osigroupedlayers.gif

Terdapat 7 layer pada model OSI. Setiap layer bertanggungjawwab secara khusus pada proses komunikasi data. Misal, satu layer bertanggungjawab untuk membentuk koneksi antar perangkat, sementara layer lainnya bertanggungjawab untuk mengoreksi terjadinya “error” selama proses transfer data berlangsung.
Model Layer OSI dibagi dalam dua group: “upper layer” dan “lower layer”. “Upper layer” fokus pada applikasi pengguna dan bagaimana file direpresentasikan di komputer. Untuk Network Engineer, bagian utama yang menjadi perhatiannya adalah pada “lower layer”. Lower layer adalah intisari komunikasi data melalui jaringan aktual.
“Open” dalam OSI

open.gif“Open” dalam OSI adalah untuk menyatakan model jaringan yang melakukan interkoneksi tanpa memandang perangkat keras/ “hardware” yang digunakan, sepanjang software komunikasi sesuai dengan standard. Hal ini secara tidak langsung menimbulkan “modularity” (dapat dibongkar pasang).
Modularity

“Modularity” mengacu pada pertukaran protokol di level tertentu tanpa mempengaruhi atau merusak hubungan atau fungsi dari level lainnya.
Dalam sebuah layer, protokol saling dipertukarkan, dan memungkinkan komunikasi terus berlangsung. Pertukaran ini berlangsung didasarkan pada perangkat keras “hardware” dari vendor yang berbeda dan bermacam-macam alasan atau keinginan yang berbeda.

Modularity
modularity_1.gif
Seperti contoh Jasa Antar/Kurir. “Modularity” pada level transportasi menyatakan bahwa tidak penting, bagaimana cara paket sampai ke pesawat.
modularity_2.gif
Paket untuk sampai di pesawat, dapat dikirim melalui truk atau kapal. Masing-masing cara tersebut, pengirim tetap mengirimkan dan berharap paket tersebut sampai di Toronto. Pesawat terbang membawa paket ke Toronto tanpa memperhatikan bagaimana paket tersebut sampai di pesawat itu.

7 Layer OSI

Model OSI terdiri dari 7 layer :

  • Application
  • Presentation
  • Session
  • Transport
  • Network
  • Data Link
  • Physical

Apa yang dilakukan oleh 7 layer OSI ?

osilayer.gif

Ketika data ditransfer melalui jaringan, sebelumnya data tersebut harus melewati ke-tujuh layer dari satu terminal, mulai dari layer aplikasi sampai physical layer, kemudian di sisi penerima, data tersebut melewati layer physical sampai aplikasi. Pada saat data melewati satu layer dari sisi pengirim, maka akan ditambahkan satu “header” sedangkan pada sisi penerima “header” dicopot sesuai dengan layernya.

Model OSI

Tujuan utama penggunaan model OSI adalah untuk membantu desainer jaringan memahami fungsi dari tiap-tiap layer yang berhubungan dengan aliran komunikasi data. Termasuk jenis-jenis protoklol jaringan dan metode transmisi.

Model dibagi menjadi 7 layer, dengan karakteristik dan fungsinya masing-masing. Tiap layer harus dapat berkomunikasi dengan layer di atasnya maupun dibawahnya secara langsung melalui serentetan protokol dan standard.

Model OSI
Keterangan
osilayers_1.gif
Application Layer: Menyediakan jasa untuk aplikasi pengguna. Layer ini bertanggungjawab atas pertukaran informasi antara program komputer, seperti program e-mail, dan service lain yang jalan di jaringan, seperti server printer atau aplikasi komputer lainnya.
osilayers_2.gif
Presentation Layer: Bertanggung jawab bagaimana data dikonversi dan diformat untuk transfer data. Contoh konversi format text ASCII untuk dokumen, .gif dan JPG untuk gambar. Layer ini membentuk kode konversi, translasi data, enkripsi dan konversi.
osilayers_3.gif
Session Layer: Menentukan bagaimana dua terminal menjaga, memelihara dan mengatur koneksi,- bagaimana mereka saling berhubungan satu sama lain. Koneksi di layer ini disebut “session”.
osilayers_4.gif
Transport Layer: Bertanggung jawab membagi data menjadi segmen, menjaga koneksi logika “end-to-end” antar terminal, dan menyediakan penanganan error (error handling).
osilayers_5.gif
Network Layer: Bertanggung jawab menentukan alamat jaringan, menentukan rute yang harus diambil selama perjalanan, dan menjaga antrian trafik di jaringan. Data pada layer ini berbentuk paket.
osilayers_6.gif
Data Link Layer: Menyediakan link untuk data, memaketkannya menjadi frame yang berhubungan dengan “hardware” kemudian diangkut melalui media. komunikasinya dengan kartu jaringan, mengatur komunikasi layer physical antara sistem koneksi dan penanganan error.
osilayers_7.gif

Physical Layer: Bertanggung jawab atas proses data menjadi bit dan mentransfernya melalui media, seperti kabel, dan menjaga koneksi fisik antar sistem.

Read More..
 

My_bLog. Design By: SkinCorner